The search session has expired. Please query the service again.
Displaying 121 –
129 of
129
We discuss various results on the existence of ‘true’ preimages under continuous open maps between -spaces, -lattices and some other spaces. The aim of the paper is to provide accessible proofs of this sort of results for functional-analysts.
We establish two fixed point theorems for certain mappings of contractive type.
In [4], J. Ceder proved that every paracompact strongly complete semimetrizable space is completely metrizable. This result cannot be generalized to paracompact weakly complete semimetrizable spaces as a known example of L. F. McAuley shows (see [11, Theorem 3.2]). It then arises, in a natural way, the question of obtaining conditions for the complete metrizability of a paracompact weakly complete semimetrizable space. In this note we give an answer to this question. We show that every regular theta,...
Let M be a metrizable group. Let G be a dense subgroup of . We prove that if G is domain representable, then . The following corollaries answer open questions. If X is completely regular and is domain representable, then X is discrete. If X is zero-dimensional, T₂, and is subcompact, then X is discrete.
Currently displaying 121 –
129 of
129