Displaying 761 – 780 of 1678

Showing per page

Multiplying balls in the space of continuous functions on [0,1]

Marek Balcerzak, Artur Wachowicz, Władysław Wilczyński (2005)

Studia Mathematica

Let C denote the Banach space of real-valued continuous functions on [0,1]. Let Φ: C × C → C. If Φ ∈ +, min, max then Φ is an open mapping but the multiplication Φ = · is not open. For an open ball B(f,r) in C let B²(f,r) = B(f,r)·B(f,r). Then f² ∈ Int B²(f,r) for all r > 0 if and only if either f ≥ 0 on [0,1] or f ≤ 0 on [0,1]. Another result states that Int(B₁·B₂) ≠ ∅ for any two balls B₁ and B₂ in C. We also prove that if Φ ∈ +,·,min,max, then the set Φ - 1 ( E ) is residual whenever E is residual in...

Multivalued fractals in b-metric spaces

Monica Boriceanu, Marius Bota, Adrian Petruşel (2010)

Open Mathematics

Fractals and multivalued fractals play an important role in biology, quantum mechanics, computer graphics, dynamical systems, astronomy and astrophysics, geophysics, etc. Especially, there are important consequences of the iterated function (or multifunction) systems theory in several topics of applied sciences. It is known that examples of fractals and multivalued fractals are coming from fixed point theory for single-valued and multivalued operators, via the so-called fractal and multi-fractal...

Near metric properties of function spaces

P. Gartside, E. Reznichenko (2000)

Fundamenta Mathematicae

"Near metric" properties of the space of continuous real-valued functions on a space X with the compact-open topology or with the topology of pointwise convergence are examined. In particular, it is investigated when these spaces are stratifiable or cometrisable.

Neighborhood base at the identity of free paratopological groups

Ali Sayed Elfard (2013)

Topological Algebra and its Applications

In 1985, V. G. Pestov described a neighborhood base at the identity of free topological groups on a Tychonoff space in terms of the elements of the fine uniformity on the Tychonoff space. In this paper, we extend Postev’s description to the free paratopological groups where we introduce a neighborhood base at the identity of free paratopological groups on any topological space in terms of the elements of the fine quasiuniformity on the space.

New fixed point theorems for mappings satisfying a generalized weakly contractive condition with weaker control functions

Hemant Kumar Nashine (2012)

Annales Polonici Mathematici

The purpose of this paper is to derive new common fixed point theorems for a pair of mappings satisfying a more general weakly contractive condition with weaker control functions in a complete metric space. Applications to new fixed point results with conditions of integral type are also given. We furnish an example to demonstrate that these results improve the previously existing ones.

Non-abelian group structure on the Urysohn universal space

Michal Doucha (2015)

Fundamenta Mathematicae

We prove that there exists a non-abelian group structure on the Urysohn universal metric space. More precisely, we introduce a variant of the Graev metric that enables us to construct a free group with countably many generators equipped with a two-sided invariant metric that is isometric to the rational Urysohn space. We list several related open problems.

Non-locally compact Polish groups and two-sided translates of open sets

Maciej Malicki (2008)

Fundamenta Mathematicae

This paper is devoted to the following question. Suppose that a Polish group G has the property that some non-empty open subset U is covered by finitely many two-sided translates of every other non-empty open subset of G. Is then G necessarily locally compact? Polish groups which do not have the above property are called strongly non-locally compact. We characterize strongly non-locally compact Polish subgroups of S in terms of group actions, and prove that certain natural classes of non-locally...

Non-normality points and nice spaces

Sergei Logunov (2021)

Commentationes Mathematicae Universitatis Carolinae

J. Terasawa in " β X - { p } are non-normal for non-discrete spaces X " (2007) and the author in “On non-normality points and metrizable crowded spaces” (2007), independently showed for any metrizable crowded space X that each point p of its Čech–Stone remainder X * is a non-normality point of β X . We introduce a new class of spaces, named nice spaces, which contains both of Sorgenfrey line and every metrizable crowded space. We obtain the result above for every nice space.

Currently displaying 761 – 780 of 1678