Displaying 81 – 100 of 174

Showing per page

Some generic properties of concentration dimension of measure

Józef Myjak, Tomasz Szarek (2003)

Bollettino dell'Unione Matematica Italiana

Let K be a compact quasi self-similar set in a complete metric space X and let M 1 K denote the space of all probability measures on K , endowed with the Fortet-Mourier metric. We will show that for a typical (in the sense of Baire category) measure in M 1 K the lower concentration dimension is equal to 0 , while the upper concentration dimension is equal to the Hausdorff dimension of K .

Some geometric properties of typical compact convex sets in Hilbert spaces

F. de Blasi (1999)

Studia Mathematica

An investigation is carried out of the compact convex sets X in an infinite-dimensional separable Hilbert space , for which the metric antiprojection q X ( e ) from e to X has fixed cardinality n+1 ( n arbitrary) for every e in a dense subset of . A similar study is performed in the case of the metric projection p X ( e ) from e to X where X is a compact subset of .

Some properties of perfect metric spaces

Angelo Bella, Biagio Ricceri (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa Nota, dati uno spazio metrico perfetto X ed un suo sottoinsieme K chiuso e raro, si dimostra l'esistenza di una funzione continua f : X [ 0 , 1 ] tale che i n t ( f - 1 ( t ) ) = per ogni t [ 0 , 1 ] , f ( x ) = 0 per ogni x K e f ( y ) = 1 per qualche y X K . In particolare, ciò permette di dare risposta simultaneamente a due questioni poste in [2]. Si mettono in evidenza, poi, ulteriori conseguenze di tale risultato.

Currently displaying 81 – 100 of 174