Displaying 1141 – 1160 of 1678

Showing per page

Préimages d’espaces héréditairement de Baire

Ahmed Bouziad (1997)

Fundamenta Mathematicae

The main result is slightly more general than the following statement: Let f: X → Y be a quasi-perfect mapping, where X is a regular space and Y a Hausdorff totally non-meagre space; if X or Y is χ-scattered, or if Y is a Lasnev space, then X is totally non-meagre. In particular, the product of a compact space X and a Hausdorff regular totally non-meagre space Y which is χ-scattered or a Lasnev space, is totally non-meagre.

Preimages of Baire spaces

Jozef Doboš, Zbigniew Piotrowski, Ivan L. Reilly (1994)

Mathematica Bohemica

A simple machinery is developed for the preservation of Baire spaces under preimages. Subsequently, some properties of maps which preserve nowhere dense sets are given.

Prescribed ultrametrics

J. Higgins, D. Campbell (1993)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Preservation of the Borel class under open-LC functions

Alexey Ostrovsky (2011)

Fundamenta Mathematicae

Let X be a Borel subset of the Cantor set C of additive or multiplicative class α, and f: X → Y be a continuous function onto Y ⊂ C with compact preimages of points. If the image f(U) of every clopen set U is the intersection of an open and a closed set, then Y is a Borel set of the same class α. This result generalizes similar results for open and closed functions.

Probabilistic approach spaces

Gunther Jäger (2017)

Mathematica Bohemica

We study a probabilistic generalization of Lowen's approach spaces. Such a probabilistic approach space is defined in terms of a probabilistic distance which assigns to a point and a subset a distance distribution function. We give a suitable axiom scheme and show that the resulting category is isomorphic to the category of left-continuous probabilistic topological convergence spaces and hence is a topological category. We further show that the category of Lowen's approach spaces is isomorphic to...

Products of Baire spaces revisited

László Zsilinszky (2004)

Fundamenta Mathematicae

Generalizing a theorem of Oxtoby, it is shown that an arbitrary product of Baire spaces which are almost locally universally Kuratowski-Ulam (in particular, have countable-in-itself π-bases) is a Baire space. Also, partially answering a question of Fleissner, it is proved that a countable box product of almost locally universally Kuratowski-Ulam Baire spaces is a Baire space.

Products of non- σ -lower porous sets

Martin Rmoutil (2013)

Czechoslovak Mathematical Journal

In the present article we provide an example of two closed non- σ -lower porous sets A , B such that the product A × B is lower porous. On the other hand, we prove the following: Let X and Y be topologically complete metric spaces, let A X be a non- σ -lower porous Suslin set and let B Y be a non- σ -porous Suslin set. Then the product A × B is non- σ -lower porous. We also provide a brief summary of some basic properties of lower porosity, including a simple characterization of Suslin non- σ -lower porous sets in topologically...

Currently displaying 1141 – 1160 of 1678