Embeddings of n-dimensional locally compact metric spaces to 2n-manifolds.
Dans cet article, on montre que l’espace des groupes marqués est un sous-espace fermé d’un ensemble de Cantor dont la dimension de Hausdorff est infinie. On prouve que la dimension de Minkowski de cet espace est infinie en exhibant des sous-ensembles de groupes marqués à petite simplification dont les dimensions de Minkowski sont arbitrairement grandes. On donne une estimation des dimensions de Minkowski de sous-espaces de groupes à un relateur. On démontre enfin que les dimensions de Minkowski...
We present an approach to cohomological dimension theory based on infinite symmetric products and on the general theory of dimension called the extension dimension. The notion of the extension dimension ext-dim(X) was introduced by A. N. Dranishnikov [9] in the context of compact spaces and CW complexes. This paper investigates extension types of infinite symmetric products SP(L). One of the main ideas of the paper is to treat ext-dim(X) ≤ SP(L) as the fundamental concept of cohomological dimension...