Page 1 Next

Displaying 1 – 20 of 25

Showing per page

The dimension of hyperspaces of non-metrizable continua

Wojciech Stadnicki (2012)

Colloquium Mathematicae

We prove that, for any Hausdorff continuum X, if dim X ≥ 2 then the hyperspace C(X) of subcontinua of X is not a C-space; if dim X = 1 and X is hereditarily indecomposable then either dim C(X) = 2 or C(X) is not a C-space. This generalizes some results known for metric continua.

The dimension of X^n where X is a separable metric space

John Kulesza (1996)

Fundamenta Mathematicae

For a separable metric space X, we consider possibilities for the sequence S ( X ) = d n : n where d n = d i m X n . In Section 1, a general method for producing examples is given which can be used to realize many of the possible sequences. For example, there is X n such that S ( X n ) = n , n + 1 , n + 2 , . . . , Y n , for n >1, such that S ( Y n ) = n , n + 1 , n + 2 , n + 2 , n + 2 , . . . , and Z such that S(Z) = 4, 4, 6, 6, 7, 8, 9,.... In Section 2, a subset X of 2 is shown to exist which satisfies 1 = d i m X = d i m X 2 and d i m X 3 = 2 .

The homotopy dimension of codiscrete subsets of the 2-sphere 𝕊²

J. W. Cannon, G. R. Conner (2007)

Fundamenta Mathematicae

Andreas Zastrow conjectured, and Cannon-Conner-Zastrow proved, that filling one hole in the Sierpiński curve with a disk results in a planar Peano continuum that is not homotopy equivalent to a 1-dimensional set. Zastrow's example is the motivation for this paper, where we characterize those planar Peano continua that are homotopy equivalent to 1-dimensional sets. While many planar Peano continua are not homotopy equivalent to 1-dimensional compacta, we prove that each has fundamental group that...

The structure of atoms (hereditarily indecomposable continua)

R. Ball, J. Hagler, Yaki Sternfeld (1998)

Fundamenta Mathematicae

Let X be an atom (= hereditarily indecomposable continuum). Define a metric ϱ on X by letting ϱ ( x , y ) = W ( A x y ) where A x , y is the (unique) minimal subcontinuum of X which contains x and y and W is a Whitney map on the set of subcontinua of X with W(X) = 1. We prove that ϱ is an ultrametric and the topology of (X,ϱ) is stronger than the original topology of X. The ϱ-closed balls C(x,r) = y ∈ X:ϱ ( x,y) ≤ r coincide with the subcontinua of X. (C(x,r) is the unique subcontinuum of X which contains x and has Whitney value...

Currently displaying 1 – 20 of 25

Page 1 Next