Mappings and inductive invariants
We prove that if f: X → Y is a closed surjective map between metric spaces such that every fiber belongs to a class S of spaces, then there exists an -set A ⊂ X such that A ∈ S and for all y ∈ Y. Here, S can be one of the following classes: (i) M: e-dim M ≤ K for some CW-complex K; (ii) C-spaces; (iii) weakly infinite-dimensional spaces. We also establish that if S = M: dim M ≤ n, then dim f ∆ g ≤ 0 for almost all .
We prove that an ultrametric space can be bi-Lipschitz embedded in if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.