Ideals of uniformly continuous mappings on pseudometric spaces
We introduce and investigate inductive dimensions 𝒦 -Ind and ℒ-Ind for classes 𝒦 of finite simplicial complexes and classes ℒ of ANR-compacta (if 𝒦 consists of the 0-sphere only, then the 𝒦 -Ind dimension is identical with the classical large inductive dimension Ind). We compare K-Ind to K-Ind introduced by the author [Mat. Vesnik 61 (2009)]. In particular, for every complex K such that K * K is non-contractible, we construct a compact Hausdorff space X with K-Ind X not equal to K-dim X.
Let X be a compactum and let be a countable family of pairs of disjoint subsets of X. Then A is said to be essential on Y ⊂ X if for every closed separating and the intersection is not empty. So A is inessential on Y if there exist closed separating and such that does not intersect Y. Properties of inessentiality are studied and applied to prove: Theorem. For every countable family of pairs of disjoint open subsets of a compactum X there exists an open set G ∩ X on which A is...
For each ordinal 1 ≤ α < ω₁ we present separable metrizable spaces , and such that (i) , where f is either trdef or ₀-trsur, (ii) and , (iii) and , and (iv) and . We also show that there exists no separable metrizable space with , and , where A(α) (resp. M(α)) is the absolutely additive (resp. multiplicative) Borel class.