The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Given a topological space ⟨X,T⟩ ∈ M, an elementary submodel of set theory, we define to be X ∩ M with topology generated by U ∩ M:U ∈ T ∩ M. We prove that if is homeomorphic to ℝ, then . The same holds for arbitrary locally compact uncountable separable metric spaces, but is independent of ZFC if “local compactness” is omitted.
We investigate generalizations of Ingram's Conjecture involving maps on trees. We show that for a class of tentlike maps on the k-star with periodic critical orbit, different maps in the class have distinct inverse limit spaces. We do this by showing that such maps satisfy the conclusion of the Pseudo-isotopy Conjecture, i.e., if h is a homeomorphism of the inverse limit space, then there is an integer N such that h and σ̂^N switch composants in the same way, where σ̂ is the standard shift map of...
A procedure for obtaining points of irreducibility for an inverse limit on intervals is developed. In connection with this, the following are included. A semiatriodic continuum is defined to be a continuum that contains no triod with interior. Characterizations of semiatriodic and unicoherent continua are given, as well as necessary and sufficient conditions for a subcontinuum of a semiatriodic and unicoherent continuum M to lie within the interior of a proper subcontinuum of M.
We describe the isolated points of an arbitrary topological space . If the -specialization pre-order on has enough maximal elements, then a point is an isolated point in if and only if is both an isolated point in the subspaces of -kerneled points of and in the -closure of (a special case of this result is proved in Mehrvarz A.A., Samei K., On commutative Gelfand rings, J. Sci. Islam. Repub. Iran 10 (1999), no. 3, 193–196). This result is applied to an arbitrary subspace of the prime...
Currently displaying 1 –
4 of
4