Page 1

Displaying 1 – 8 of 8

Showing per page

The disjoint arcs property for homogeneous curves

Paweł Krupski (1995)

Fundamenta Mathematicae

The local structure of homogeneous continua (curves) is studied. Components of open subsets of each homogeneous curve which is not a solenoid have the disjoint arcs property. If the curve is aposyndetic, then the components are nonplanar. A new characterization of solenoids is formulated: a continuum is a solenoid if and only if it is homogeneous, contains no terminal nontrivial subcontinua and small subcontinua are not ∞-ods.

The generalized Schoenflies theorem for absolute suspensions

David P. Bellamy, Janusz M. Lysko (2005)

Colloquium Mathematicae

The aim of this paper is to prove the generalized Schoenflies theorem for the class of absolute suspensions. The question whether the finite-dimensional absolute suspensions are homeomorphic to spheres remains open. Partial solution to this question was obtained in [Sz] and [Mi]. Morton Brown gave in [Br] an ingenious proof of the generalized Schoenflies theorem. Careful analysis of his proof reveals that modulo some technical adjustments a similar argument gives an analogous result for the class...

Currently displaying 1 – 8 of 8

Page 1