The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 2 of 2

Showing per page

Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces

Othman Echi (2003)

Bollettino dell'Unione Matematica Italiana

In this paper, we deal with the study of quasi-homeomorphisms, the Goldman prime spectrum and the Jacobson prime spectrum of a commutative ring. We prove that, if g : Y X is a quasi-homeomorphism, Z a sober space and f : Y Z a continuous map, then there exists a unique continuous map F : X Z such that F g = f . Let X be a T 0 -space, q : X s X the injection of X onto its sobrification X s . It is shown, here, that q Gold X = Gold X s , where Gold X is the set of all locally closed points of X . Some applications are also indicated. The Jacobson prime spectrum...

Quasi-orbit spaces associated to T₀-spaces

C. Bonatti, H. Hattab, E. Salhi (2011)

Fundamenta Mathematicae

Let G ⊂ Homeo(E) be a group of homeomorphisms of a topological space E. The class of an orbit O of G is the union of all orbits having the same closure as O. Let E/G̃ be the space of classes of orbits, called the quasi-orbit space. We show that every second countable T₀-space Y is a quasi-orbit space E/G̃, where E is a second countable metric space. The regular part X₀ of a T₀-space X is the union of open subsets homeomorphic to ℝ or to 𝕊¹. We give a characterization of the spaces X with finite...

Currently displaying 1 – 2 of 2

Page 1