Page 1

Displaying 1 – 9 of 9

Showing per page

Generalized analytic spaces, completeness and fragmentability

Petr Holický (2001)

Czechoslovak Mathematical Journal

Classical analytic spaces can be characterized as projections of Polish spaces. We prove analogous results for three classes of generalized analytic spaces that were introduced by Z. Frolík, D. Fremlin and R. Hansell. We use the technique of complete sequences of covers. We explain also some relations of analyticity to certain fragmentability properties of topological spaces endowed with an additional metric.

Generalized Helly spaces, continuity of monotone functions, and metrizing maps

Lech Drewnowski, Artur Michalak (2008)

Fundamenta Mathematicae

Given an ordered metric space (in particular, a Banach lattice) E, the generalized Helly space H(E) is the set of all increasing functions from the interval [0,1] to E considered with the topology of pointwise convergence, and E is said to have property (λ) if each of these functions has only countably many points of discontinuity. The main objective of the paper is to study those ordered metric spaces C(K,E), where K is a compact space, that have property (λ). In doing so, the guiding idea comes...

Generalized linearly ordered spaces and weak pseudocompactness

Oleg Okunev, Angel Tamariz-Mascarúa (1997)

Commentationes Mathematicae Universitatis Carolinae

A space X is truly weakly pseudocompact if X is either weakly pseudocompact or Lindelöf locally compact. We prove that if X is a generalized linearly ordered space, and either (i) each proper open interval in X is truly weakly pseudocompact, or (ii) X is paracompact and each point of X has a truly weakly pseudocompact neighborhood, then X is truly weakly pseudocompact. We also answer a question about weakly pseudocompact spaces posed by F. Eckertson in [Eck].

Currently displaying 1 – 9 of 9

Page 1