O dimenziji P-dm topoloških prostora
This paper gives a partial solution to a problem of W. Taylor on characterization of the unit interval in the class of all topological spaces by means of the first order properties of their clones. A characterization within the class of compact spaces is obtained.
We say that a real normed lattice is quasi-Baire if the intersection of each sequence of monotonic open dense sets is dense. An example of a Baire-convex space, due to M. Valdivia, which is not quasi-Baire is given. We obtain that is a quasi-Baire space iff , is a pairwise Baire bitopological space, where , is a quasi-uniformity that determines, in . Nachbin’s sense, the topological ordered space .
A continuum means a compact connected metric space. For a continuum X, H(X) denotes the space of all homeomorphisms of X with the compact-open topology. It is well known that H(X) is a completely metrizable, separable topological group. J. Kennedy [8] considered a compactification of H(X) and studied its properties when X has various types of homogeneity. In this paper we are concerned with the compactification of the homeomorphism group of the pseudo-arc P, which is obtained by the method of...
We give a proof of a theorem of Maćkowiak on the existence of universal n-dimensional hereditarily indecomposable continua, based on the Baire-category method.
Let . Then cmp Zₙ < def Zₙ for n ≥ 5. This is the answer to a question posed by de Groot and Nishiura [GN] for n ≥ 5.