The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 30

Showing per page

Partitions of compact Hausdorff spaces

Gary Gruenhage (1993)

Fundamenta Mathematicae

Under the assumption that the real line cannot be covered by ω 1 -many nowhere dense sets, it is shown that (a) no Čech-complete space can be partitioned into ω 1 -many closed nowhere dense sets; (b) no Hausdorff continuum can be partitioned into ω 1 -many closed sets; and (c) no compact Hausdorff space can be partitioned into ω 1 -many closed G δ -sets.

Planar rational compacta

L. Feggos, S. Iliadis, S. Zafiridou (1995)

Colloquium Mathematicae

In this paper we consider rational subspaces of the plane. A rational space is a space which has a basis of open sets with countable boundaries. In the special case where the boundaries are finite, the space is called rim-finite.

Pressing Down Lemma for λ -trees and its applications

Hui Li, Liang-Xue Peng (2013)

Czechoslovak Mathematical Journal

For any ordinal λ of uncountable cofinality, a λ -tree is a tree T of height λ such that | T α | < cf ( λ ) for each α < λ , where T α = { x T : ht ( x ) = α } . In this note we get a Pressing Down Lemma for λ -trees and discuss some of its applications. We show that if η is an uncountable ordinal and T is a Hausdorff tree of height η such that | T α | ω for each α < η , then the tree T is collectionwise Hausdorff if and only if for each antichain C T and for each limit ordinal α η with cf ( α ) > ω , { ht ( c ) : c C } α is not stationary in α . In the last part of this note, we investigate some...

Currently displaying 1 – 20 of 30

Page 1 Next