Ideals induced by Tsirelson submeasures
We use Tsirelson’s Banach space ([2]) to define an P-ideal which refutes a conjecture of Mazur and Kechris (see [12, 9, 8]).
We use Tsirelson’s Banach space ([2]) to define an P-ideal which refutes a conjecture of Mazur and Kechris (see [12, 9, 8]).
The least cardinal λ such that some (equivalently: every) compact group with weight α admits a dense, pseudocompact subgroup of cardinality λ is denoted by m(α). Clearly, . We show: Theorem 4.12. Let G be Abelian with |G| = γ. If either m(α) ≤ α and m, or α > ω and , then G admits a pseudocompact group topology of weight α. Theorem 4.15. Every connected, pseudocompact Abelian group G with wG = α ≥ ω satisfies . Theorem 5.2(b). If G is divisible Abelian with , then G admits at most -many...
We study when a topological space has a weaker connected topology. Various sufficient and necessary conditions are given for a space to have a weaker Hausdorff or regular connected topology. It is proved that the property of a space of having a weaker Tychonoff topology is preserved by any of the free topological group functors. Examples are given for non-preservation of this property by “nice” continuous mappings. The requirement that a space have a weaker Tychonoff connected topology is rather...
On a Morse decomposition of an isolated invariant set of a homeomorphism (discrete dynamical system) there are partial orderings defined by the homeomorphism. These are called admissible orderings of the Morse decomposition. We prove the existence of index filtrations for admissible total orderings of a Morse decomposition and introduce the connection matrix in this case.
Let (X,T) be a Cantor minimal system and let (R,) be the associated étale equivalence relation (the orbit equivalence relation). We show that for an arbitrary Cantor minimal system (Y,S) there exists a closed subset Z of X such that (Y,S) is conjugate to the subsystem (Z,T̃), where T̃ is the induced map on Z from T. We explore when we may choose Z to be a T-regular and/or a T-thin set, and we relate T-regularity of a set to R-étaleness. The latter concept plays an important role in the study of...
For each ordinal 1 ≤ α < ω₁ we present separable metrizable spaces , and such that (i) , where f is either trdef or ₀-trsur, (ii) and , (iii) and , and (iv) and . We also show that there exists no separable metrizable space with , and , where A(α) (resp. M(α)) is the absolutely additive (resp. multiplicative) Borel class.
The topology of one-dimensional invariant sets (attractors) is of great interest. R. F. Williams [20] demonstrated that hyperbolic one-dimensional non-wandering sets can be represented as inverse limits of graphs with bonding maps that satisfy certain strong dynamical properties. These spaces have "homogeneous neighborhoods" in the sense that small open sets are homeomorphic to the product of a Cantor set and an arc. In this paper we examine inverse limits of graphs with more complicated bonding...
The main aim of this paper is to give a simpler proof of the following assertion. Let A be an analytic non-σ-porous subset of a locally compact metric space, E. Then there exists a compact non-σ-porous subset of A. Moreover, we prove the above assertion also for σ-P-porous sets, where P is a porosity-like relation on E satisfying some additional conditions. Our result covers σ-⟨g⟩-porous sets, σ-porous sets, and σ-symmetrically porous sets.