Integral Global Weights for Torus Actions on Projective Spaces.
We establish results on invariant approximation for fuzzy nonexpansive mappings defined on fuzzy metric spaces. As an application a result on the best approximation as a fixed point in a fuzzy normed space is obtained. We also define the strictly convex fuzzy normed space and obtain a necessary condition for the set of all -best approximations to contain a fixed point of arbitrary mappings. A result regarding the existence of an invariant point for a pair of commuting mappings on a fuzzy metric...
R. A. Johnson showed that there is no translation-invariant Borel lifting for the measure algebra of ℝ/ℤ equipped with Haar measure, a result which was generalized by M. Talagrand to non-discrete locally compact abelian groups and by J. Kupka and K. Prikry to arbitrary non-discrete locally compact groups. In this paper we study analogs of these results for category algebras (the Borel σ-algebra modulo the ideal of first category sets) of topological groups. Our main results are for the class of...
Let be a -space such that the orbit space is metrizable. Suppose a family of slices is given at each point of . We study a construction which associates, under some conditions on the family of slices, with any metric on an invariant metric on . We show also that a family of slices with the required properties exists for any action of a countable group on a locally compact and locally connected metric space.
For the full shift (Σ₂,σ) on two symbols, we construct an invariant distributionally ϵ-scrambled set for all 0 < ϵ < diam Σ₂ in which each point is transitive, but not weakly almost periodic.
Our aim is to point out the applicability of the Knaster-Tarski fixed point principle to the problem of existence of invariant sets in discrete-time (multivalued) semi-dynamical systems, especially iterated function systems.
For any m, 2 ≤ m < ∞, we construct an ergodic dynamical system having spectral multiplicity m and infinite rank. Given r > 1, 0 < b < 1 such that rb > 1 we construct a dynamical system (X, B, μ, T) with simple spectrum such that r(T) = r, F*(T) = b, and
Let (I,T) be the inverse limit space of a post-critically finite tent map. Conditions are given under which these inverse limit spaces are pairwise nonhomeomorphic. This extends results of Barge & Diamond [2].
We survey recent papers on the problem of backward dynamics in economics, providing along the way a glimpse at the economics perspective, a discussion of the economic models and mathematical tools involved, and a list of applicable literature in both mathematics and economics.
We derive several properties of unimodal maps having only periodic points whose period is a power of 2. We then consider inverse limits on intervals using a single strongly unimodal bonding map having periodic points whose only periods are all the powers of 2. One such mapping is the logistic map, = 4λx(1-x) on [f(λ),λ], at the Feigenbaum limit, λ ≈ 0.89249. It is known that this map produces an hereditarily decomposable inverse limit with only three topologically different subcontinua. Other...
We construct in Bell-Kunen’s model: (a) a group maximal topology on a countable infinite Boolean group of weight and (b) a countable irresolvable dense subspace of . In this model .