Previous Page 10

Displaying 181 – 196 of 196

Showing per page

Truncated Lie groups and almost Klein models

Georges Giraud, Michel Boyom (2004)

Open Mathematics

We consider a real analytic dynamical system G×M→M with nonempty fixed point subset M G. Using symmetries of G×M→M, we give some conditions which imply the existence of transitive Lie transformation group with G as isotropy subgroup.

Turning Borel sets into clopen sets effectively

Vassilios Gregoriades (2012)

Fundamenta Mathematicae

We present the effective version of the theorem about turning Borel sets in Polish spaces into clopen sets while preserving the Borel structure of the underlying space. We show that under some conditions the emerging parameters can be chosen in a hyperarithmetical way and using this we obtain some uniformity results.

Two generic results in fixed point theory

Simeon Reich, Alexander J. Zaslavski (2007)

Banach Center Publications

We give two examples of the generic approach to fixed point theory. The first example is concerned with the asymptotic behavior of infinite products of nonexpansive mappings in Banach spaces and the second with the existence and stability of fixed points of continuous mappings in finite-dimensional Euclidean spaces.

Two spaces homeomorphic to S e q ( p )

Jerry E. Vaughan (2001)

Commentationes Mathematicae Universitatis Carolinae

We consider the spaces called S e q ( u t ) , constructed on the set S e q of all finite sequences of natural numbers using ultrafilters u t to define the topology. For such spaces, we discuss continuity, homogeneity, and rigidity. We prove that S ( u t ) is homogeneous if and only if all the ultrafilters u t have the same Rudin-Keisler type. We proved that a space of Louveau, and in certain cases, a space of Sirota, are homeomorphic to S e q ( p ) (i.e., u t = p for all t S e q ). It follows that for a Ramsey ultrafilter p , S e q ( p ) is a topological group....

Two types of remainders of topological groups

Aleksander V. Arhangel'skii (2008)

Commentationes Mathematicae Universitatis Carolinae

We prove a Dichotomy Theorem: for each Hausdorff compactification b G of an arbitrary topological group G , the remainder b G G is either pseudocompact or Lindelöf. It follows that if a remainder of a topological group is paracompact or Dieudonne complete, then the remainder is Lindelöf, and the group is a paracompact p -space. This answers a question in A.V. Arhangel’skii, Some connections between properties of topological groups and of their remainders, Moscow Univ. Math. Bull. 54:3 (1999), 1–6. It is...

Currently displaying 181 – 196 of 196

Previous Page 10