Frames in Priestley's duality
An example of two -equivalent (hence -equivalent) compact spaces is presented, one of which is Fréchet and the other is not.
We study free topological groups defined over uniform spaces in some subclasses of the class of non-archimedean groups. Our descriptions of the corresponding topologies show that for metrizable uniformities the corresponding free balanced, free abelian and free Boolean groups are also metrizable. Graev type ultra-metrics determine the corresponding free topologies. Such results are in a striking contrast with free balanced and free abelian topological groups cases (in standard varieties). Another...
The concept of the distinguished sets is applied to the investigation of the functionally countable spaces. It is proved that every Baire function on a functionally countable space has a countable image. This is a positive answer to a question of R. Levy and W. D. Rice.
Let X and Y be two Polish spaces. Functions f,g: X → Y are called equivalent if there exists a bijection φ from X onto itself such that g∘φ = f. Using a theorem of J. Saint Raymond we characterize functions equivalent to Borel measurable ones. This characterization answers a question asked by M. Morayne and C. Ryll-Nardzewski.
In this work, we establish new Furi–Pera type fixed point theorems for the sum and the product of abstract nonlinear operators in Banach algebras; one of the operators is completely continuous and the other one is -Lipchitzian. The Kuratowski measure of noncompactness is used together with recent fixed point principles. Applications to solving nonlinear functional integral equations are given. Our results complement and improve recent ones in [10], [11], [17].
In the paper, three different ways of constructing distances between vaguely described objects are shown: a generalization of the classic distance between subsets of a metric space, distance between membership functions of fuzzy sets and a fuzzy metric introduced by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh’s extension principle, particularly to are dealt with in detail.