Homotopy and homology in pretopological spaces
We give a homotopy classification of nanophrases with at most four letters. It is an extension of the classification of nanophrases of length 2 with at most four letters, given by the author in a previous paper. As a corollary, we give a stable classification of ordered, pointed, oriented multi-component curves on surfaces with minimal crossing number less than or equal to 2 such that any equivalent curve has no simply closed curves in its components.
Let p be a prime number. We prove that if G is a compact Lie group with a non-trivial p-subgroup, then the orbit space of the classifying space of the category associated to the G-poset of all non-trivial elementary abelian p-subgroups of G is contractible. This gives, for every G-CW-complex X each of whose isotropy groups contains a non-trivial p-subgroup, a decomposition of X/G as a homotopy colimit of the functor defined over the poset , where sd is the barycentric subdivision. We also...
We show the existence of a finite polyhedron P dominating infinitely many different homotopy types of finite polyhedra and such that there is a bound on the lengths of all strictly descending sequences of homotopy types dominated by P. This answers a question of K. Borsuk (1979) dealing with shape-theoretic notions of "capacity" and "depth" of compact metric spaces. Moreover, π₁(P) may be any given non-abelian poly-ℤ-group and dim P may be any given integer n ≥ 3.