-space structure on pointed mapping spaces.
In this paper, we show how certain “stability phenomena” in unpointed model categories provide the sets of homotopy classes with a canonical structure of an abelian heap, i.e. an abelian group without a choice of a zero. In contrast with the classical situation of stable (pointed) model categories, these sets can be empty.
We construct a Hecke structure on equivariant Bredon cohomology with local coefficients and then describe some of its properties. We compare this structure with the Mackey structure defined by T. tom Dieck and with the Illman transfer.
Utilizando la técnica de mezclar grupos de homotopía introducida por Zabrodsky [10], obtenemos aquí nuevos H-espacios finitos no simplemente conexos, cuyos más conocidos ejemplos son los que tienen por cubrimiento universal los H-espacios de rango 2 y tipo (3,7) generalmente denotados como Ekω.