-absorbing sequences in hyperspaces of subcontinua
Let denote a true dimension function, i.e., a dimension function such that for all . For a space , we denote the hyperspace consisting of all compact connected, non-empty subsets by . If is a countable infinite product of non-degenerate Peano continua, then the sequence is -absorbing in . As a consequence, there is a homeomorphism such that for all , , where denotes the pseudo boundary of the Hilbert cube . It follows that if is a countable infinite product of non-degenerate...