Displaying 61 – 80 of 256

Showing per page

Dynamical zeta functions, congruences in Nielsen theory and Reidemeister torsion

Alexander Fel'shtyn, Richard Hill (1999)

Banach Center Publications

In this paper we prove trace formulas for the Reidemeister numbers of group endomorphisms and the rationality of the Reidemeister zeta function in the following cases: the group is finitely generated and the endomorphism is eventually commutative; the group is finite; the group is a direct sum of a finite group and a finitely generated free Abelian group; the group is finitely generated, nilpotent and torsion free. We connect the Reidemeister zeta function of an endomorphism of a direct sum of a...

Epsilon Nielsen coincidence theory

Marcio Fenille (2014)

Open Mathematics

We construct an epsilon coincidence theory which generalizes, in some aspect, the epsilon fixed point theory proposed by Robert Brown in 2006. Given two maps f, g: X → Y from a well-behaved topological space into a metric space, we define µ ∈(f, g) to be the minimum number of coincidence points of any maps f 1 and g 1 such that f 1 is ∈ 1-homotopic to f, g 1 is ∈ 2-homotopic to g and ∈ 1 + ∈ 2 < ∈. We prove that if Y is a closed Riemannian manifold, then it is possible to attain µ ∈(f, g) moving...

Equilibria in a class of games and topological results implying their existence.

R.S. Simon, S. Spiez, H. Torunczyk (2008)

RACSAM

We survey results related to the problem of the existence of equilibria in some classes of infinitely repeated two-person games of incomplete information on one side, first considered by Aumann, Maschler and Stearns. We generalize this setting to a broader one of principal-agent problems. We also discuss topological results needed, presenting them dually (using cohomology in place of homology) and more systematically than in our earlier papers.

Fixed point theory and the K-theoretic trace

Ross Geoghegan, Andrew Nicas (1999)

Banach Center Publications

The relationship between fixed point theory and K-theory is explained, both classical Nielsen theory (versus K 0 ) and 1-parameter fixed point theory (versus K 1 ). In particular, various zeta functions associated with suspension flows are shown to come in a natural way as “traces” of “torsions” of Whitehead and Reidemeister type.

Currently displaying 61 – 80 of 256