Displaying 41 – 60 of 71

Showing per page

On Lusternik-Schnirelmann category of SO(10)

Norio Iwase, Toshiyuki Miyauchi (2016)

Fundamenta Mathematicae

Let G be a compact connected Lie group and p: E → ΣA be a principal G-bundle with a characteristic map α: A → G, where A = ΣA₀ for some A₀. Let K i F i - 1 F i | 1 i m with F₀ = ∗, F₁ = ΣK₁ and Fₘ ≃ G be a cone-decomposition of G of length m and F’₁ = ΣK’₁ ⊂ F₁ with K’₁ ⊂ K₁ which satisfy F i F ' F i + 1 up to homotopy for all i. Then cat(E) ≤ m + 1, under suitable conditions, which is used to determine cat(SO(10)). A similar result was obtained by Kono and the first author (2007) to determine cat(Spin(9)), but that result could not...

On real flag manifolds with cup-length equal to its dimension

Marko Radovanović (2020)

Czechoslovak Mathematical Journal

We prove that for any positive integers n 1 , n 2 , ... , n k there exists a real flag manifold F ( 1 , ... , 1 , n 1 , n 2 , ... , n k ) with cup-length equal to its dimension. Additionally, we give a necessary condition that an arbitrary real flag manifold needs to satisfy in order to have cup-length equal to its dimension.

On the homological category of 3-manifolds.

José Carlos Gómez Larrañaga, Francisco Javier González Acuña (1991)

Revista Matemática de la Universidad Complutense de Madrid

Let M be a closed, connected, orientable 3-manifold. Denote by n(S1 x S2) the connected sum of n copies of S1 x S2. We prove that if the homological category of M is three then for some n ≥ 1, H*(M) is isomorphic (as a ring) to H*(n(S1 x S2)).

On two results of Singhof

Augustin-Liviu Mare (1997)

Commentationes Mathematicae Universitatis Carolinae

For a compact connected semisimple Lie group G we shall prove two results (both related with Singhof’s paper [13]) on the Lusternik-Schnirelmann category of the adjoint orbits of G , respectively the 1-dimensional relative category of a maximal torus T in G . The techniques will be classical, but we shall also apply some basic results concerning the so-called 𝒜 -category (cf. [14]).

Quelques contre-exemples pour la LS catégorie d'une algèbre de cochaînes

Elhassan Idrissi (1991)

Annales de l'institut Fourier

À toute algèbre de cochaînes A sont associés les invariants numériques suivants : bi M cat ( A ) , r M cat ( A ) et l M cat ( A ) qui approximent, pour tout corps k et lorsque A = C * ( X ; k ) , la catégorie au sens de Lusternik-Schnirelmann de l’espace X . Nous montrons dans cet article que ces trois invariants sont deux à deux distincts.

Remarks on minimal round functions

Georgi Khimshiashvili, Dirk Siersma (2003)

Banach Center Publications

We describe the structure of minimal round functions on compact closed surfaces and three-dimensional manifolds. The minimal possible number of critical loops is determined and typical non-equisingular round function germs are interpreted in the spirit of isolated line singularities. We also discuss a version of Lusternik-Schnirelmann theory suitable for round functions.

Sur la catégorie de Lusternik-Schnirelmann des algèbres de cochaînes

Bitjong Ndombol (1991)

Annales de l'institut Fourier

Nous introduisons une nouvelle définition d’un invariant bi M cat pour une algèbre de cochaînes A connexe et 1-connexe, de type fini sur un corps k de caractéristique quelconque, et nous montrons d’une part, qu’il coïncide avec l’invariant 𝒜 cat introduit par S. Halperin et J.-M. Lemaire et d’autre part, qu’il est invariant par extension de corps et qu’il vérifie la conjecture de Ganéa.

Currently displaying 41 – 60 of 71