Displaying 281 – 300 of 682

Showing per page

Homotopy and homology groups of the n-dimensional Hawaiian earring

Katsuya Eda, Kazuhiro Kawamura (2000)

Fundamenta Mathematicae

For the n-dimensional Hawaiian earring n , n ≥ 2, π n ( n , o ) ω and π i ( n , o ) is trivial for each 1 ≤ i ≤ n - 1. Let CX be the cone over a space X and CX ∨ CY be the one-point union with two points of the base spaces X and Y being identified to a point. Then H n ( X Y ) H n ( X ) H n ( Y ) H n ( C X C Y ) for n ≥ 1.

Homotopy orbits of free loop spaces

Marcel Bökstedt, Iver Ottosen (1999)

Fundamenta Mathematicae

Let X be a space with free loop space ΛX and mod two cohomology R = H*X. We construct functors Ω λ ( R ) and ℓ(R) together with algebra homomorphisms e : Ω λ ( R ) H * ( Λ X ) and ψ : ( R ) H * ( E S 1 × S 1 Λ X ) . When X is 1-connected and R is a symmetric algebra we show that these are isomorphisms.

Injective comodules and Landweber exact homology theories

Mark Hovey (2007)

Fundamenta Mathematicae

We classify the indecomposable injective E(n)⁎E(n)-comodules, where E(n) is the Johnson-Wilson homology theory. They are suspensions of the J n , r = E ( n ) ( M r E ( r ) ) , where 0 ≤ r ≤ n, with the endomorphism ring of J n , r being E ( r ) ^ * E ( r ) ^ , where E ( r ) ^ denotes the completion of E(r).

Integrating central extensions of Lie algebras via Lie 2-groups

Christoph Wockel, Chenchang Zhu (2016)

Journal of the European Mathematical Society

The purpose of this paper is to show how central extensions of (possibly infinite-dimensional) Lie algebras integrate to central extensions of étale Lie 2-groups in the sense of [Get09, Hen08]. In finite dimensions, central extensions of Lie algebras integrate to central extensions of Lie groups, a fact which is due to the vanishing of π 2 for each finite-dimensional Lie group. This fact was used by Cartan (in a slightly other guise) to construct the simply connected Lie group associated to each finite-dimensional...

Integration over homogeneous spaces for classical Lie groups using iterated residues at infinity

Magdalena Zielenkiewicz (2014)

Open Mathematics

Using the Berline-Vergne integration formula for equivariant cohomology for torus actions, we prove that integrals over Grassmannians (classical, Lagrangian or orthogonal ones) of characteristic classes of the tautological bundle can be expressed as iterated residues at infinity of some holomorphic functions of several variables. The results obtained for these cases can be expressed as special cases of one formula involving the Weyl group action on the characters of the natural representation of...

Intersection cohomology of reductive varieties

Roy Joshua, Michel Brion (2004)

Journal of the European Mathematical Society

We extend the methods developed in our earlier work to algorithmically compute the intersection cohomology Betti numbers of reductive varieties. These form a class of highly symmetric varieties that includes equivariant compactifications of reductive groups. Thereby, we extend a well-known algorithm for toric varieties.

Currently displaying 281 – 300 of 682