Independence complexes and edge covering complexes via Alexander duality.
This is a survey of the results on stable homotopy types of polyhedra of small dimensions, mainly obtained by H.-J. Baues and the author [3, 5, 6]. The proofs are based on the technique of matrix problems (bimodule categories).
In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.
Let ξ = (E, p, B, F) be a Hurewicz fibration. In this paper we study the space LG(ξ) consisting of fibre homotopy self equivalences of ξ inducing by restriction to the fibre a self homotopy equivalence of F belonging to the group G. We give in particular conditions implying that π1(LG(ξ)) is finitely generated or that L1(ξ) has the same rational homotopy type as aut1(F).
The behavior of special classes of isometric foldings of the Riemannian sphere under the action of angular conformal deformations is considered. It is shown that within these classes any isometric folding is continuously deformable into the standard spherical isometric folding defined by .
We consider the stable homotopy category S of polyhedra (finite cell complexes). We say that two polyhedra X,Y are in the same genus and write X ∼ Y if X p ≅ Y p for all prime p, where X p denotes the image of Xin the localized category S p. We prove that it is equivalent to the stable isomorphism X∨B 0 ≅Y∨B 0, where B 0 is the wedge of all spheres S n such that π nS(X) is infinite. We also prove that a stable isomorphism X ∨ X ≅ Y ∨ X implies a stable isomorphism X ≅ Y.