Product and other fine structure in polynomial resolutions of mapping spaces.
Nous considérons les groupes de cobordisme (définis par Arnold) d’immersions lagrangiennes exactes de variétés compactes dans . Grâce au théorème de Gromov-Lees, leur calcul est celui des groupes d’homotopie de spectres de Thom construits sur les espaces (cas non-orienté, le calcul est alors dû à Smith et Stong) et (cas orienté, groupes dont nous calculons la “partie paire”, et sur la “partie impaire” desquels nous donnons des informations). Nous calculons aussi les images de ces groupes dans...
We use a K-theory recipe of Thomason to obtain classifications of triangulated subcategories via refining some standard thick subcategory theorems. We apply this recipe to the full subcategories of finite objects in the derived categories of rings and the stable homotopy category of spectra. This gives, in the derived categories, a complete classification of the triangulated subcategories of perfect complexes over some commutative rings. In the stable homotopy category of spectra we obtain only...
We calculate completely the Real cobordism groups, introduced by Landweber and Fujii, in terms of homotopy groups of known spectra.