Configuration-Spaces and Iterated Loop-Spaces.
Our point of departure is J. Neisendorfer's localization theorem which reveals a subtle connection between some simply connected finite complexes and their connected covers. We show that even though the connected covers do not forget that they came from a finite complex their homotopy-theoretic properties are drastically different from those of finite complexes. For instance, connected covers of finite complexes may have uncountable genus or nontrivial SNT sets, their Lusternik-Schnirelmann category...
We aim at constructing a PL-manifold which is cellularly equivalent to a given homology manifold . The main theorem says that there is a unique obstruction element in , where is the group of 3-dimensional PL-homology spheres modulo those which are the boundary of an acyclic PL-manifold. If the obstruction is zero and is compact, we obtain a PL-manifold which is simple homotopy equivalent to .