Displaying 21 – 40 of 107

Showing per page

A G -minimal model for principal G -bundles

Shrawan Kumar (1982)

Annales de l'institut Fourier

Sullivan associated a uniquely determined D G A | Q to any simply connected simplicial complex E . This algebra (called minimal model) contains the total (and exactly) rational homotopy information of the space E . In case E is the total space of a principal G -bundle, ( G is a compact connected Lie-group) we associate a G -equivariant model U G [ E ] , which is a collection of “ G -homotopic” D G A ’s | R with G -action. U G [ E ] will, in general, be different from the Sullivan’s minimal model of the space E . U G [ E ] contains the total rational...

A Note on Hamiltonian Lie Group Actions and Massey Products

Zofia Stępień, Aleksy Tralle (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

We show that the property of having only vanishing triple Massey products in equivariant cohomology is inherited by the set of fixed points of hamiltonian circle actions on closed symplectic manifolds. This result can be considered in a more general context of characterizing homotopic properties of Lie group actions. In particular it can be viewed as a partial answer to a question posed by Allday and Puppe about finding conditions ensuring the "formality" of G-actions.

A note on singular homology groups of infinite products of compacta

Kazuhiro Kawamura (2002)

Fundamenta Mathematicae

Let n be an integer with n ≥ 2 and X i be an infinite collection of (n-1)-connected continua. We compare the homotopy groups of Σ ( i X i ) with those of i Σ X i (Σ denotes the unreduced suspension) via the Freudenthal Suspension Theorem. An application to homology groups of the countable product of the n(≥ 2)-sphere is given.

Currently displaying 21 – 40 of 107