On the Classification Problem for H-Spaces of Rank Two.
The Hilton-Hopf quadratic form is defined for spaces of the homotopy type of a CW complex with one cell each in dimensions 0 and 4n, K cells in dimension 2n and no other cells. If two such spaces are of the same topological genus, then their Hilton-Hopf quadratic forms are of the same weak algebraic genus. For large classes of spaces, such as simply connected differentiable 4-manifolds, the converse is also true, as long as the suspensions of the spaces are also of the same topological genus. This...
We prove that the space of nonempty subsets of cardinality at most k in a bouquet of m+1-dimensional spheres is (m+k-2)-connected. This, as shown by Tuffley, implies that the space is (m+k-2)-connected for any m-connected cell complex X.