Connected Morava K-Theories.
We aim at constructing a PL-manifold which is cellularly equivalent to a given homology manifold . The main theorem says that there is a unique obstruction element in , where is the group of 3-dimensional PL-homology spheres modulo those which are the boundary of an acyclic PL-manifold. If the obstruction is zero and is compact, we obtain a PL-manifold which is simple homotopy equivalent to .