Mappings Into Loop Spaces and Central Group Extensions.
We prove that all groups can be realized as fundamental groups of compact spaces if and only if no measurable cardinals exist. If the cardinality of a group G is nonmeasurable then the compact space K such that G = π₁K may be chosen so that it is path connected.
Let 𝒜 be a fixed collection of spaces, and suppose K is a nilpotent space that can be built from spaces in 𝒜 by a succession of cofiber sequences. We show that, under mild conditions on the collection 𝒜, it is possible to construct K from spaces in 𝒜 using, instead, homotopy (inverse) limits and extensions by fibrations. One consequence is that if K is a nilpotent finite complex, then ΩK can be built from finite wedges of spheres using homotopy limits and extensions by fibrations. This is applied...