Higher homotopy groupoids and Toda brackets.
On construit une suite spectrale qui converge vers le bigradué associé à une filtration convenable des groupes d’homotopie du monoïde simplicial des équivalences d’homotopie fibrées d’un fibré de Kan dans lui-même. On obtient de nouveaux calculs de ces groupes. En particulier, on calcule le groupe des classes d’homotopie des équivalences d’homotopie d’un espace ayant trois groupes d’homotopie non nuls en dessous de sa dimension.
We formulate first results of our larger project based on first fixing some easily accessible invariants of topological spaces (typically the cup product structure in low dimensions) and then studying the variations of more complex invariants such as (the homotopy Lie algebra) or (the graded Lie algebra associated to the lower central series of the fundamental group). We prove basic rigidity results and give also an application in low-dimensional topology.