Loading [MathJax]/extensions/MathZoom.js
We construct a cohomology transfer for n-fold ramified covering maps. Then we define a very general concept of transfer for ramified covering maps and prove a classification theorem for such transfers. This generalizes Roush's classification of transfers for n-fold ordinary covering maps. We characterize those representable cofunctors which admit a family of transfers for ramified covering maps that have two naturality properties, as well as normalization and stability. This is analogous to Roush's...
In this paper, we generalize the equivariant homotopy groups or equivalently the Rhodes groups. We establish a short exact sequence relating the generalized Rhodes groups and the generalized Fox homotopy groups and we introduce Γ-Rhodes groups, where Γ admits a certain co-grouplike structure. Evaluation subgroups of Γ-Rhodes groups are discussed.
We prove a new adjunction theorem for n-equivalences. This theorem enables us to produce a simple geometric version of proof of the triad connectivity theorem of Blakers and Massey. An important intermediate step is a study of the collapsing map S∨X → S, S being a sphere.
Currently displaying 1 –
15 of
15