Displaying 241 – 260 of 689

Showing per page

G-functors, G-posets and homotopy decompositions of G-spaces

Stefan Jackowski, Jolanta Słomińska (2001)

Fundamenta Mathematicae

We describe a unifying approach to a variety of homotopy decompositions of classifying spaces, mainly of finite groups. For a group G acting on a poset W and an isotropy presheaf d:W → (G) we construct a natural G-map h o c o l i m d G / d ( - ) | W | which is a (non-equivariant) homotopy equivalence, hence h o c o l i m d E G × G F d E G × G | W | is a homotopy equivalence. Different choices of G-posets and isotropy presheaves on them lead to homotopy decompositions of classifying spaces. We analyze higher limits over the categories associated to isotropy presheaves...

Groupoïde fondamental et d'holonomie de certains feuilletages réguliers

María C. Lasso de la Vega (1989)

Publicacions Matemàtiques

Let M be a manifold with a regular foliation F. We recall the construction of the fundamental groupoid and the homotopy groupoid associated to F. We describe some interesting particular cases and give some glueing techniques. We characterize the cases where these groupoids are Hausdorff spaces.We study in particular both groupoids associated to foliations with Reeb components.

Currently displaying 241 – 260 of 689