Section and Base-Point Functors.
We describe, for any compact connected Lie group G and any prime p, the monoid of self maps → which are rational equivalences. Here, denotes the p-adic completion of the classifying space of G. Among other things, we show that two such maps are homotopic if and only if they induce the same homomorphism in rational cohomology, if and only if their restrictions to the classifying space of the maximal torus of G are homotopic.
Our aim is to show a method of finding all natural transformations of a functor into itself. We use here the terminology introduced in [4,5]. The notion of a soldered double linear morphism of soldered double vector spaces (fibrations) is defined. Differentiable maps commuting with -soldered automorphisms of a double vector space are investigated. On the set of such mappings, appropriate partial operations are introduced. The natural transformations are bijectively related with the elements...
Let E be the total space of a Hurewicz fiber space whose base and all fibers are ANRs. We prove that if E is metrisable, then it is also an ANR.
We describe an alternative approach to some results of Vassiliev ([Va1]) on spaces of polynomials, by applying the "scanning method" used by Segal ([Se2]) in his investigation of spaces of rational functions. We explain how these two approaches are related by the Smale-Hirsch Principle or the h-Principle of Gromov. We obtain several generalizations, which may be of interest in their own right.