Splitting of Gysin extensions.
Teardrops are generalizations of open mapping cylinders. We prove that the teardrop of a stratified approximate fibration X → Y × ℝ with X and Y homotopically stratified spaces is itself a homotopically stratified space (under mild hypothesis). This is applied to manifold stratified approximate fibrations between manifold stratified spaces in order to establish the realization part of a previously announced tubular neighborhood theory.
The fourth axiom of a model category states that given a commutative square of maps, say i: A → B, g: B → Y, f: A → X, and p: X → Y such that gi = pf, if i is a cofibration, p a fibration and either i or p is a weak equivalence, then a lifting (i.e. a map h: B → X such that ph = g and hi = f) exists. We show that for many model categories the two conditions that either i or p above is a weak equivalence can be embedded in an infinite number of conditions which imply the existence of a lifting (roughly,...
On construit et classifie à conjugaison équivariante près toutes les formes de contact invariantes sur un fibré principal en cercles ( compact). Si , les formes obtenues induisent sur des formes de contact dans chaque classe d’homotopie de 1-formes sans zéros : on en déduit que admet une infinité de structures de contact non isomorphes.
On étudie la structure naturelle d’algèbre de Lie de l’espace des sections de classe d’un fibré localement trivial dont la fibre-type est une algèbre de Lie ; on décrit, en particulier, ses dérivations et ses automorphismes. On détermine les algèbres de Lie pour lesquelles cette structure caractérise la structure différentiable de la base du fibré.