Trivial bundles and near-homeomorphisms
The probability measure functor P carries open continuous mappings of compact metric spaces into Q-bundles provided Y is countable-dimensional and all fibers are infinite. This answers a question raised by V. Fedorchuk.
It is shown that the classification of polynomial algebras over the mod p Steenrod algebra is an essentially different problem from the classification of polynomial algebras truncated at height greater than p over the Steenrod algebra.
On construit un contre-exemple de la conjecture suivante : si la cohomologie modulo 2 réduite d'un polyGEM 1-connexe quelconque est de type fini et si elle n'est pas réduite à (0), alors elle contient au moins un élément non nilpotent.