Displaying 161 – 180 of 268

Showing per page

Optimal bounds for the colored Tverberg problem

Pavle V. M. Blagojević, Benjamin Matschke, Günter M. Ziegler (2015)

Journal of the European Mathematical Society

We prove a “Tverberg type” multiple intersection theorem. It strengthens the prime case of the original Tverberg theorem from 1966, as well as the topological Tverberg theorem of Bárány et al. (1980), by adding color constraints. It also provides an improved bound for the (topological) colored Tverberg problem of Bárány & Larman (1992) that is tight in the prime case and asymptotically optimal in the general case. The proof is based on relative equivariant obstruction theory.

Postnikov invariants of H-spaces

Dominique Arlettaz, Nicole Pointet-Tischler (1999)

Fundamenta Mathematicae

It is known that the order of all Postnikov k-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the k-invariants k m + 1 ( X ) of X in dimensions m ≤ 2n if X is an (n-1)-connected H-space which is not necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of X.

Currently displaying 161 – 180 of 268