Displaying 21 – 40 of 153

Showing per page

Generalized Einstein manifolds

Formella, Stanisław (1990)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0699.00032.] A manifold (M,g) is said to be generalized Einstein manifold if the following condition is satisfied ( X S ) ( Y , Z ) = σ ( X ) g ( Y , Z ) + ν ( Y ) g ( X , Z ) + ν ( Z ) g ( X , Y ) where S(X,Y) is the Ricci tensor of (M,g) and σ (X), ν (X) are certain -forms. In the present paper the author studies properties of conformal and geodesic mappings of generalized Einstein manifolds. He gives the local classification of generalized Einstein manifolds when g( ψ (X), ψ (X)) 0 .

Generalized Hantzsche-Wendt flat manifolds.

Juan P. Rossetti, Andrzey Szczepanski (2005)

Revista Matemática Iberoamericana

We study the family of closed Riemannian n-manifolds with holonomy group isomorphic to Z2n-1, which we call generalized Hantzsche-Wendt manifolds. We prove results on their structure, compute some invariants, and find relations between them, illustrated in a graph connecting the family.

Generalized n-colorings of links

Daniel Silver, Susan Williams (1998)

Banach Center Publications

The notion of an (n,r)-coloring for a link diagram generalizes the idea of an n-coloring introduced by R. H. Fox. For any positive integer n the various (n,r)-colorings of a diagram for an oriented link l correspond in a natural way to the periodic points of the representation shift Φ / n ( l ) of the link. The number of (n,r)-colorings of a diagram for a satellite knot is determined by the colorings of its pattern and companion knots together with the winding number.

Generalized universal covering spaces and the shape group

Hanspeter Fischer, Andreas Zastrow (2007)

Fundamenta Mathematicae

If a paracompact Hausdorff space X admits a (classical) universal covering space, then the natural homomorphism φ: π₁(X) → π̌₁(X) from the fundamental group to its first shape homotopy group is an isomorphism. We present a partial converse to this result: a path-connected topological space X admits a generalized universal covering space if φ: π₁(X) → π̌₁(X) is injective. This generalized notion of universal covering p: X̃ → X enjoys most of the usual properties, with the possible exception of evenly...

Generating series and asymptotics of classical spin networks

Francesco Costantino, Julien Marché (2015)

Journal of the European Mathematical Society

We study classical spin networks with group SU 2 . In the first part, using Gaussian integrals, we compute their generating series in the case where the edges are equipped with holonomies; this generalizes Westbury’s formula. In the second part, we use an integral formula for the square of the spin network and perform stationary phase approximation under some non-degeneracy hypothesis. This gives a precise asymptotic behavior when the labels are rescaled by a constant going to infinity.

Currently displaying 21 – 40 of 153