Loading [MathJax]/extensions/MathZoom.js
- Subjects
- 57-XX Manifolds and cell complexes
Displaying 21 –
40 of
153
[For the entire collection see Zbl 0699.00032.] A manifold (M,g) is said to be generalized Einstein manifold if the following condition is satisfied
where S(X,Y) is the Ricci tensor of (M,g) and (X), (X) are certain -forms. In the present paper the author studies properties of conformal and geodesic mappings of generalized Einstein manifolds. He gives the local classification of generalized Einstein manifolds when g( (X), (X)).
We study the family of closed Riemannian n-manifolds with holonomy group isomorphic to Z2n-1, which we call generalized Hantzsche-Wendt manifolds. We prove results on their structure, compute some invariants, and find relations between them, illustrated in a graph connecting the family.
The notion of an (n,r)-coloring for a link diagram generalizes the idea of an n-coloring introduced by R. H. Fox. For any positive integer n the various (n,r)-colorings of a diagram for an oriented link l correspond in a natural way to the periodic points of the representation shift of the link. The number of (n,r)-colorings of a diagram for a satellite knot is determined by the colorings of its pattern and companion knots together with the winding number.
If a paracompact Hausdorff space X admits a (classical) universal covering space, then the natural homomorphism φ: π₁(X) → π̌₁(X) from the fundamental group to its first shape homotopy group is an isomorphism. We present a partial converse to this result: a path-connected topological space X admits a generalized universal covering space if φ: π₁(X) → π̌₁(X) is injective.
This generalized notion of universal covering p: X̃ → X enjoys most of the usual properties, with the possible exception of evenly...
We study classical spin networks with group SU. In the first part, using Gaussian integrals, we compute their generating series in the case where the edges are equipped with holonomies; this generalizes Westbury’s formula. In the second part, we use an integral formula for the square of the spin network and perform stationary phase approximation under some non-degeneracy hypothesis. This gives a precise asymptotic behavior when the labels are rescaled by a constant going to infinity.
We give an algebraic proof of the fact that a generating set of the mapping class group Mg,1 (g ≥ 3) may be obtained by replicating a generating set of M2,1.
Currently displaying 21 –
40 of
153