On 4-manifolds with free fundamental group.
We study an integro-differential operator Φ: H̅¹ → L² of Fredholm type and give sufficient conditions for Φ to be a diffeomorphism. An application to functional equations is presented.
The following problem is investigated: «Find an elementary function such that if is a knot diagram with crossings and the corresponding knot is trivial, then there is a sequence of Reidemeister moves that proves triviality such that at each step we have less than crossings». The problem is shown to be equivalent to a problem posed by D. Welsh in [7] and solved by geometrical techniques (normal surfaces).