The First Cohomology Group of Leaves and Local Stability of Compact Foliations.
We show that a map between complex-analytic manifolds, at least one ofwhich is in the Fujiki class, is a biholomorphism under a natural condition on the second cohomologies. We use this to establish that, with mild restrictions, a certain relation of “domination” introduced by Gromov is in fact a partial order.
We show that the Fukumoto-Furuta invariant for a rational homology 3-sphere M, which coincides with the Neumann-Siebenmann invariant for a Seifert rational homology 3-sphere, is the same as the Ozsváth-Szabó's correction term derived from the Heegaard Floer homology theory if M is a spherical 3-manifold.
This paper uses combinatorial group theory to help answer some long-standing questions about the genera of orientable surfaces that carry particular kinds of regular maps. By classifying all orientably-regular maps whose automorphism group has order coprime to , where is the genus, all orientably-regular maps of genus for prime are determined. As a consequence, it is shown that orientable surfaces of infinitely many genera carry no regular map that is chiral (irreflexible), and that orientable...
The aim of this paper is to prove the generalized Schoenflies theorem for the class of absolute suspensions. The question whether the finite-dimensional absolute suspensions are homeomorphic to spheres remains open. Partial solution to this question was obtained in [Sz] and [Mi]. Morton Brown gave in [Br] an ingenious proof of the generalized Schoenflies theorem. Careful analysis of his proof reveals that modulo some technical adjustments a similar argument gives an analogous result for the class...