Dicovering spaces.
We give an explicit expression of a two-parameter family of Flensted-Jensen’s functions on a concrete realization of the universal covering group of . We prove that these functions are, up to a phase factor, radial eigenfunctions of the Landau Hamiltonian on the hyperbolic disc with a magnetic field strength proportional to , and corresponding to the eigenvalue .
We introduce a new notion of covering projection E → X of a topological space X which reduces to the usual notion if X is locally connected. We use locally constant presheaves and covering reduced sieves to find a pro-groupoid π crs (X) and an induced category pro (π crs (X), Sets) such that for any topological space X the category of covering projections and transformations of X is equivalent to the category pro (π crs (X), Sets). We also prove that the latter category is equivalent to pro (π CX,...
If a paracompact Hausdorff space X admits a (classical) universal covering space, then the natural homomorphism φ: π₁(X) → π̌₁(X) from the fundamental group to its first shape homotopy group is an isomorphism. We present a partial converse to this result: a path-connected topological space X admits a generalized universal covering space if φ: π₁(X) → π̌₁(X) is injective. This generalized notion of universal covering p: X̃ → X enjoys most of the usual properties, with the possible exception of evenly...
J. Maher a montré qu’une variété hyperbolique de dimension compacte sans bord, connexe et orientable fibre virtuellement sur le cercle si et seulement si elle admet une famille infinie de revêtements finis de genre de Heegaard borné. En s’appuyant sur la démonstration de Maher, cet article présente un théorème donnant une condition suffisante pour qu’un revêtement fini d’une variété hyperbolique compacte de dimension contienne une fibre virtuelle, qui s’exprime en fonction du degré du revêtement...
Hass, Rubinstein, and Scott showed that every closed aspherical (irreducible) 3-manifold whose fundamental group contains the fundamental group of a closed aspherical surface, is covered by Euclidean space. This theorem does not generalize to higher dimensions. However, we provide geometric tools with which variations of this theorem can be proved in all dimensions.