Ideal triangulations of 3-manifolds II; taut and angle structures.
Nous considérons un germe de feuilletage holomorphe singulier non-dicritique défini sur une boule fermée , satisfaisant des hypothèses génériques, de courbe de séparatrice . Nous démontrons l’existence d’un voisinage ouvert de dans tel que, pour toute feuille de , l’inclusion naturelle induit un monomorphisme au niveau du groupe fondamental. Pour cela, nous introduisons la notion géométrique de « connexité feuilletée » avec laquelle nous réinterprétons la notion d’incompressibilité....
We show that, given any n and α, any embedding of any sufficiently large complete graph in ℝ³ contains an oriented link with components Q₁, ..., Qₙ such that for every i ≠ j, and , where denotes the second coefficient of the Conway polynomial of .
We study numerical and polynomial invariants of piecewise-linear knots, with the goal of better understanding the space of all knots and links. For knots with small numbers of edges we are able to find limits on polynomial or Vassiliev invariants sufficient to determine an exact list of realizable knots. We thus obtain the minimal edge number for all knots with six or fewer crossings. For example, the only knot requiring exactly seven edges is the figure-8 knot.