Characterization of Hilbert cube manifolds: an alternate proof
Knot complements in the n-sphere are characterized. A connected open subset W of is homeomorphic with the complement of a locally flat (n-2)-sphere in , n ≥ 4, if and only if the first homology group of W is infinite cyclic, W has one end, and the homotopy groups of the end of W are isomorphic to those of in dimensions less than n/2. This result generalizes earlier theorems of Daverman, Liem, and Liem and Venema.
It is shown that the hyperspace (resp. ) of non-empty closed (resp. closed and bounded) subsets of a metric space (X,d) is homeomorphic to ℓ₂ if and only if the completion X̅ of X is connected and locally connected, X is topologically complete and nowhere locally compact, and each subset (resp. each bounded subset) of X is totally bounded.