Displaying 801 – 820 of 1237

Showing per page

Open 3-manifolds, wild subsets of S3 and branched coverings.

José María Montesinos-Amilibia (2003)

Revista Matemática Complutense

In this paper, a representation of closed 3-manifolds as branched coverings of the 3-sphere, proved in [13], and showing a relationship between open 3-manifolds and wild knots and arcs will be illustrated by examples. It will be shown that there exist a 3-fold simple covering p : S3 --> S3 branched over the remarkable simple closed curve of Fox [4] (a wild knot). Moves are defined such that when applied to a branching set, the corresponding covering manifold remains unchanged, while the branching...

Open Subsets of LF-spaces

Kotaro Mine, Katsuro Sakai (2008)

Bulletin of the Polish Academy of Sciences. Mathematics

Let F = ind lim Fₙ be an infinite-dimensional LF-space with density dens F = τ ( ≥ ℵ ₀) such that some Fₙ is infinite-dimensional and dens Fₙ = τ. It is proved that every open subset of F is homeomorphic to the product of an ℓ₂(τ)-manifold and = i n d l i m (hence the product of an open subset of ℓ₂(τ) and ). As a consequence, any two open sets in F are homeomorphic if they have the same homotopy type.

Perfect stratifications and theory of weights.

Vicente Navarro Aznar (1992)

Publicacions Matemàtiques

In this paper we emphasize Deligne's theory of weights, in order to prove that some stratifications of algebraic varieties are perfect. In particular, we study in some detail the Bialynicki-Birula's stratifications and the stratifications considered by F. Kirwan to compute the cohomology of symplectic or geometric quotients. Finally we also appoint the motivic formulation of this approach, which contains the Hodge theoretic formulation.

Currently displaying 801 – 820 of 1237