Eta invariants as sliceness obstructions and their relation to Casson-Gordon invariants.
Friedl, Stefan (2004)
Algebraic & Geometric Topology
Eva Bayer (1980)
Commentarii mathematici Helvetici
Vladimir Turaev (1999/2000)
Séminaire Bourbaki
Hà Huy Vui, Alexandru Zaharia (1996)
Mathematische Annalen
Alan H. Durfee, H. Blaine Jr. Lwason (1972)
Inventiones mathematicae
Roger Fenn (1989)
Publicacions Matemàtiques
In this note it is shown that the complement of the singular linked spheres in four dimensions defined by Fenn and Rolfsen can be fibred by tori.Also a symmetry between the two components is revealed which shows that the image provides an example of a Spanier-Whitehead duality. This provides an immediate proof that the α-invariant is non zero.
Jonathan A. Hillman (1981)
Mathematische Annalen
C. Kearton, E. Bayer-Fluckiger (1989)
Mathematische Zeitschrift
Eva Bayer, Francoise Michel (1979)
Commentarii mathematici Helvetici
Julien Duval (1986)
Commentarii mathematici Helvetici
J. Barge (1976)
Mémoires de la Société Mathématique de France
Sylvain E. Cappell, Julius L. Shaneson (1976)
Commentarii mathematici Helvetici
Broda, B. (1993)
Proceedings of the Winter School "Geometry and Topology"
Tim D. Cochran (1985)
Commentarii mathematici Helvetici
J.A. Hillman, S.P. Plotnick (1990)
Mathematische Annalen
David Lines, Jorge Morales (1988)
Mathematische Annalen
M. Farber (1991)
Commentarii mathematici Helvetici
Andrzej Szczepański, Andreĭ Vesnin (1999)
Fundamenta Mathematicae
We prove that the natural HNN-extensions of the fractional Fibonacci groups are the fundamental groups of high-dimensional knot complements. We also give some characterization and interpretation of these knots. In particular we show that some of them are 2-knots.
Eva Bayer-Fluckiger (1983)
Commentarii mathematici Helvetici
Gabriela Hinojosa, Alberto Verjovsky (2006)
Revista Matemática Complutense
In this paper we prove that a wild knot K which is the limit set of a Kleinian group acting conformally on the unit 3-sphere, with its standard metric, is homogeneous: given two points p, q ∈ K, there exists a homeomorphism f of the sphere such that f(K) = K and f(p) = q. We also show that if the wild knot is a fibered knot then we can choose an f which preserves the fibers.