The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
It is shown that the -index of a 2-distribution in an 8-dimensional spin vector bundle over an 8-complex is independent of the 2-distribution. Necessary and sufficient conditions for the existence of 2-distributions in such vector bundles are given in terms of characteristic classes and a certain secondary cohomology operation. In some cases this operation is computed.
Let ξ be an oriented 8-dimensional spin vector bundle over an 8-complex. In this paper we give necessary and sufficient conditions for ξ to have 4 linearly independent sections or to be a sum of two 4-dimensional spin vector bundles, in terms of characteristic classes and higher order cohomology operations. On closed connected spin smooth 8-manifolds these operations can be computed.
In this paper, we present an analytic definition for the relative torsion for flat C*-algebra bundles over a compact manifold. The advantage of such a relative torsion is that it is defined without any hypotheses on the flat C*-algebra bundle. In the case where the flat C*-algebra bundle is of determinant class, we relate it easily to the L^2 torsion as defined in [7],[5].
Necessary and sufficient conditions for the existence of -dimensional oriented vector bundles () over CW-complexes of dimension with prescribed Stiefel-Whitney classes , and Pontrjagin class are found. As a consequence some results on the span of 6 and 7-dimensional oriented vector bundles are given in terms of characteristic classes.
Let ξ be an oriented 8-dimensional vector bundle. We prove that the structure group SO(8) of ξ can be reduced to Sp(2) or Sp(2) · Sp(1) if and only if the vector bundle associated to ξ via a certain outer automorphism of the group Spin(8) has 3 linearly independent sections or contains a 3-dimensional subbundle. Necessary and sufficient conditions for the existence of an Sp(2)- structure in ξ over a closed connected spin manifold of dimension 8 are also given in terms of characteristic classes.
Necessary and sufficient conditions for the existence of two linearly independent sections in an 8-dimensional spin vector bundle over a CW-complex of the same dimension are given in terms of characteristic classes and a certain secondary cohomology operation. In some cases this operation is computed.
Let E → W be an oriented vector bundle, and let X(E) denote the Euler number of E. The paper shows how to calculate X(E) in terms of equations which describe E and W.
Currently displaying 1 –
11 of
11