A characterization of the disc
Heegaard splittings and Heegaard diagrams of a closed 3-manifold are translated into the language of Morse functions with Morse-Smale pseudo-gradients defined on . We make use in a very simple setting of techniques which Jean Cerf developed for solving a famous pseudo-isotopy problem. In passing, we show how to cancel the supernumerary local extrema in a generic path of functions when . The main tool that we introduce is an elementary swallow tail lemma which could be useful elsewhere.