Involutions of 3-dimensional handlebodies
We study the orientation preserving involutions of the orientable 3-dimensional handlebody , for any genus g. A complete classification of such involutions is given in terms of their fixed points.
We study the orientation preserving involutions of the orientable 3-dimensional handlebody , for any genus g. A complete classification of such involutions is given in terms of their fixed points.
The standard P. A. Smith theory of p-group actions on spheres, disks, and euclidean spaces is extended to the case of p-group actions on tori (i.e., products of circles) and coupled with topological surgery theory to give a complete topological classification, valid in all dimensions, of the locally linear, orientation-reversing, involutions on tori with fixed point set of codimension one.
Let denote the closed 3-manifold obtained as the connected sum of g copies of S² × S¹, with free fundamental group of rank g. We prove that, for a finite group G acting on which induces a faithful action on the fundamental group, there is an upper bound for the order of G which is quadratic in g, but there does not exist a linear bound in g. This implies then a Jordan-type bound for arbitrary finite group actions on which is quadratic in g. For the proofs we develop a calculus for finite group...
We conjecture that every finite group G acting on a contractible CW-complex X of dimension 2 has at least one fixed point. We prove this in the case where G is solvable, and under this additional hypothesis, the result holds for X acyclic.
We consider finite groups which admit a faithful, smooth action on an acyclic manifold of dimension three, four or five (e.g. Euclidean space). Our first main result states that a finite group acting on an acyclic 3- or 4-manifold is isomorphic to a subgroup of the orthogonal group O(3) or O(4), respectively. The analogous statement remains open in dimension five (where it is not true for arbitrary continuous actions, however). We prove that the only finite nonabelian simple groups admitting a smooth...
It is known that the order of a finite group of diffeomorphisms of a 3-dimensional handlebody of genus g > 1 is bounded by the linear polynomial 12(g-1), and that the order of a finite group of diffeomorphisms of a 4-dimensional handlebody (or equivalently, of its boundary 3-manifold), faithful on the fundamental group, is bounded by a quadratic polynomial in g (but not by a linear one). In the present paper we prove a generalization for handlebodies of arbitrary dimension d, uniformizing handlebodies...