Displaying 241 – 260 of 535

Showing per page

Spaces of measurable functions

Piotr Niemiec (2013)

Open Mathematics

For a metrizable space X and a finite measure space (Ω, 𝔐 , µ), the space M µ(X) of all equivalence classes (under the relation of equality almost everywhere mod µ) of 𝔐 -measurable functions from Ω to X, whose images are separable, equipped with the topology of convergence in measure, and some of its subspaces are studied. In particular, it is shown that M µ(X) is homeomorphic to a Hilbert space provided µ is (nonzero) nonatomic and X is completely metrizable and has more than one point.

Spaces of polynomials with roots of bounded multiplicity

M. Guest, A. Kozlowski, K. Yamaguchi (1999)

Fundamenta Mathematicae

We describe an alternative approach to some results of Vassiliev ([Va1]) on spaces of polynomials, by applying the "scanning method" used by Segal ([Se2]) in his investigation of spaces of rational functions. We explain how these two approaches are related by the Smale-Hirsch Principle or the h-Principle of Gromov. We obtain several generalizations, which may be of interest in their own right.

Spaces of upper semicontinuous multi-valued functions on complete metric spaces

Katsuro Sakai, Shigenori Uehara (1999)

Fundamenta Mathematicae

Let X = (X,d) be a metric space and let the product space X × ℝ be endowed with the metric ϱ ((x,t),(x’,t’)) = maxd(x,x’), |t - t’|. We denote by U S C C B ( X ) the space of bounded upper semicontinuous multi-valued functions φ : X → ℝ such that each φ(x) is a closed interval. We identify φ U S C C B ( X ) with its graph which is a closed subset of X × ℝ. The space U S C C B ( X ) admits the Hausdorff metric induced by ϱ. It is proved that if X = (X,d) is uniformly locally connected, non-compact and complete, then U S C C B ( X ) is homeomorphic to a...

Space-time decompositions via differential forms

Fecko, Marián (1998)

Proceedings of the 17th Winter School "Geometry and Physics"

The author presents a simple method (by using the standard theory of connections on principle bundles) of ( 3 + 1 ) -decomposition of the physical equations written in terms of differential forms on a 4-dimensional spacetime of general relativity, with respect to a general observer. Finally, the author suggests possible applications of such a decomposition to the Maxwell theory.

Special invariant operators I

Jarolím Bureš (1996)

Commentationes Mathematicae Universitatis Carolinae

The aim of the first part of a series of papers is to give a description of invariant differential operators on manifolds with an almost Hermitian symmetric structure of the type G / B which are defined on bundles associated to the reducible but undecomposable representation of the parabolic subgroup B of the Lie group G . One example of an operator of this type is the Penrose’s local twistor transport. In this part general theory is presented, and conformally invariant operators are studied in more...

Currently displaying 241 – 260 of 535